机器学习入门之【机器学习】归一化特征值的处理
小标 2018-10-19 来源 : 阅读 2081 评论 0

摘要:本文主要向大家介绍了机器学习入门之【机器学习】归一化特征值的处理,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。

本文主要向大家介绍了机器学习入门之【机器学习】归一化特征值的处理,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。

# -*- coding:utf-8 -*-

__author__ = ‘Ghostviper‘
"""
归一化特征值
"""
from numpy import *
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m, 1))
    normDataSet = normDataSet / tile(ranges, (m, 1))
    return normDataSet, ranges, minVals
if __name__ == "__main__":
    dataSet = array([
        [0.1, 12345, 23],
        [-1.2, 456431, 46],
        [0.99, 23332, 89],
        [1.3, 97653, 123],
        [2, 10900, 23],
        [1, 54612, 9],
    ])
    normDataSet, ranges, minVals = autoNorm(dataSet)输出结果:array([[ 0.40625   ,  0.00324332,  0.12280702],
       [ 0.        ,  1.        ,  0.3245614 ],
       [ 0.684375  ,  0.02790378,  0.70175439],
       [ 0.78125   ,  0.19471821,  1.        ],
       [ 1.        ,  0.        ,  0.12280702],
       [ 0.6875    ,  0.09811214,  0.        ]])
array([  3.20000000e+00,   4.45531000e+05,   1.14000000e+02])
array([ -1.20000000e+00,   1.09000000e+04,   9.00000000e+00])算法核心:(数据集 - 最小特征数据集)/ (最大特征-最小特征)数据集用途:用于处理不同组特征数据差异较大的情况

本文由职坐标整理并发布,希望对同学们有所帮助。了解更多详情请关注职坐标人工智能机器学习频道!

本文由 @小标 发布于职坐标。未经许可,禁止转载。
喜欢 | 2 不喜欢 | 0
看完这篇文章有何感觉?已经有2人表态,100%的人喜欢 快给朋友分享吧~
评论(0)
后参与评论

您输入的评论内容中包含违禁敏感词

我知道了

助您圆梦职场 匹配合适岗位
验证码手机号,获得海同独家IT培训资料
选择就业方向:
人工智能物联网
大数据开发/分析
人工智能Python
Java全栈开发
WEB前端+H5

请输入正确的手机号码

请输入正确的验证码

获取验证码

您今天的短信下发次数太多了,明天再试试吧!

提交

我们会在第一时间安排职业规划师联系您!

您也可以联系我们的职业规划师咨询:

小职老师的微信号:z_zhizuobiao
小职老师的微信号:z_zhizuobiao

版权所有 职坐标-一站式AI+学习就业服务平台 沪ICP备13042190号-4
上海海同信息科技有限公司 Copyright ©2015 www.zhizuobiao.com,All Rights Reserved.
 沪公网安备 31011502005948号    

©2015 www.zhizuobiao.com All Rights Reserved